30=6/(a+a^2)

Simple and best practice solution for 30=6/(a+a^2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 30=6/(a+a^2) equation:



30=6/(a+a^2)
We move all terms to the left:
30-(6/(a+a^2))=0
Domain of the equation: (a+a^2))!=0
a∈R
We multiply all the terms by the denominator
-(6+30*(a+a^2))=0
We calculate terms in parentheses: -(6+30*(a+a^2)), so:
6+30*(a+a^2)
determiningTheFunctionDomain 30*(a+a^2)+6
We multiply parentheses
30a^2+30a+6
Back to the equation:
-(30a^2+30a+6)
We get rid of parentheses
-30a^2-30a-6=0
a = -30; b = -30; c = -6;
Δ = b2-4ac
Δ = -302-4·(-30)·(-6)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-6\sqrt{5}}{2*-30}=\frac{30-6\sqrt{5}}{-60} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+6\sqrt{5}}{2*-30}=\frac{30+6\sqrt{5}}{-60} $

See similar equations:

| 0=6/a+a | | 24x^2-6x-25=0 | | 64=x2 | | 2/3x+1=7/3-1 | | 0.08x=-15 | | 1.5z-2=3.25z-9 | | 1.5x+5=2.5x-1 | | 7x-6+12x=5 | | 4x÷5+6=8 | | 0.5x^2=2x-2 | | 5x-33+3x=103 | | 6x+5=10x-1 | | 2(x-3)=10x6-8x | | 9x+84=3x | | Y=3,8x | | 11c(c=11) | | 3/4x+2=-16 | | 2x+3/5=x-7/2 | | |5-2x|=|3x+1| | | 18x+4=7x/4 | | 0.5x^2=2x+1 | | 4k/9=3k/7 | | -12q-13=15q+13 | | 19p+26=13p+13 | | 6p-36= | | 2z-6=3z+14 | | 7x-17=31+x | | 4c=3c+4c | | x(40)=(x-10)50 | | 3+2(3x+1)=3+2(2x-1) | | 5x-1=x=11 | | x/3+x/4=21/60 |

Equations solver categories